Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts.

نویسندگان

  • Xiaochun Zhou
  • Nesha May Andoy
  • Guokun Liu
  • Eric Choudhary
  • Kyu-Sung Han
  • Hao Shen
  • Peng Chen
چکیده

Metal nanoparticles are used as catalysts in a variety of important chemical reactions, and can have a range of different shapes, with facets and sites that differ in catalytic reactivity. To develop better catalysts it is necessary to determine where catalysis occurs on such nanoparticles and what structures are more reactive. Surface science experiments or theory can be used to predict the reactivity of surfaces with a known structure, and the reactivity of nanocatalysts can often be rationalized from a knowledge of their well-defined surface facets. Here, we show that a knowledge of the surface facets of a gold nanorod catalyst is insufficient to predict its reactivity, and we must also consider defects on the surface of the nanorod. We use super-resolution fluorescence microscopy to quantify the catalysis of the nanorods at a temporal resolution of a single catalytic reaction and a spatial resolution of ∼40 nm. We find that within the same surface facets on the sides of a single nanorod, the reactivity is not constant and exhibits a gradient from the centre of the nanorod towards its two ends. Furthermore, the ratio of the reactivity at the ends of the nanorod to the reactivity at the sides varies significantly from nanorod to nanorod, even though they all have the same surface facets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bimetallic Effect of Single Nanocatalysts Visualized by Super-Resolution Catalysis Imaging

Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with el...

متن کامل

Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy.

This review discusses the latest advances in using single-molecule microscopy of fluorogenic reactions to examine and understand the spatiotemporal catalytic behaviors of single metal nanoparticles of various shapes including pseudospheres, nanorods, and nanoplates. Real-time single-turnover kinetics reveal size-, catalysis-, and metal-dependent temporal activity fluctuations of single pseudosp...

متن کامل

Single-Molecule Kinetics Reveals a Hidden Surface Reaction Intermediate in Single-Nanoparticle Catalysis

Detecting and characterizing reaction intermediates is not only important and powerful for elucidating reaction mechanisms but also challenging in general because of the low populations of intermediates in a reaction mixture. Studying surface reaction intermediates in heterogeneous catalysis presents additional challenges, especially the ubiquitous structural heterogeneity among the catalyst pa...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2012